Part Number Hot Search : 
M450V 2653L C15CA 1N4699 C1316 TNY253G ST763ABD R263T
Product Description
Full Text Search
 

To Download APT150GN60J Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  050-7624 rev a 11-2005 APT150GN60J typical performance curves maximum ratings all ratings: t c = 25c unless otherwise speci?ed. static electrical characteristics characteristic / test conditionscollector-emitter breakdown voltage (v ge = 0v, i c = 4ma) gate threshold voltage (v ce = v ge , i c = 2400a, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 150a, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 150a, t j = 125c) collector cut-off current (v ce = 600v, v ge = 0v, t j = 25c) 2 collector cut-off current (v ce = 600v, v ge = 0v, t j = 125c) 2 gate-emitter leakage current (v ge = 20v) intergrated gate resistor symbol v (br)ces v ge(th) v ce(on) i ces i ges r g(int) units volts ana ? symbol v ces v ge i c1 i c2 i cm ssoa p d t j ,t stg t l APT150GN60J 600 30 220123 450 450a @ 600v 536 -55 to 175 300 unit volts ampswatts c parametercollector-emitter voltage gate-emitter voltage continuous collector current @ t c = 25c continuous collector current @ t c = 110c pulsed collector current 1 switching safe operating area @ t j = 175c total power dissipationoperating and storage junction temperature range max. lead temp. for soldering: 0.063" from case for 10 sec. apt website - http://www.advancedpower.com caution: these devices are sensitive to electrostatic discharge. proper hand ling procedures should be followed. utilizing the latest field stop and trench gate technologies, these igbt's have ultra low v ce(on) and are ideal for low frequency applications that require absolute minimum conduction loss. easy paralleling is a result of very tight parameter distribution and a slightly positive v ce(on) temperature coef?cient. a built-in gate resistor ensures extremely reliable operation, even in the event of a short circuit fault. low gate charge simpli?es gate drive design and minimizes losses. ? 600v field stop ? trench gate: low v ce(on) ? easy paralleling ? intergrated gate resistor: low emi, high reliability applications : welding, inductive heating, solar inverters, smps, motor drives, ups min typ max 600 5.0 5.8 6.5 1.05 1.45 1.85 1.65 25 tbd 600 2 ? g c e 600v APT150GN60J sot-227 isotop ? file # e145592 "ul recognized" g e e c downloaded from: http:///
050-7624 rev a 11-2005 APT150GN60J 1 repetitive rating: pulse width limited by maximum junction temperature. 2 for combi devices, i ces includes both igbt and fred leakages 3 see mil-std-750 method 3471. 4 e on1 is the clamped inductive turn-on energy of the igbt only, without the effect of a commutating diode reverse recovery current adding to the igbt turn-on loss. tested in inductive switching test circuit shown in ?gure 21, but with a silicon carbide diode.5 e on2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the igbt turn-on switching loss. (see figures 21, 22.) 6 e off is the clamped inductive turn-off energy measured in accordance with jedec standard jesd24-1. (see figures 21, 23.) 7 r g is external gate resistance, not including r g(int) nor gate driver impedance. (mic4452) apt reserves the right to change, without notice, the speci?cations and information contained herein . dynamic characteristics symbol c ies c oes c res v gep q g q ge q gc ssoa t d(on) t r t d(off) t f e on1 e on2 e off t d(on) t r t d(off) t f e on1 e on2 e off test conditions capacitance v ge = 0v, v ce = 25v f = 1 mhz gate charge v ge = 15v v ce = 300v i c = 150a t j = 175c, r g = 4.3 ? 7 , v ge = 15v, l = 100h,v ce = 600v inductive switching (25c) v cc = 400v v ge = 15v i c = 150a r g = 1.0 ? 7 t j = +25c inductive switching (125c) v cc = 400v v ge = 15v i c = 150a r g = 1.0 ? 7 t j = +125c characteristicinput capacitance output capacitance reverse transfer capacitance gate-to-emitter plateau voltage total gate charge 3 gate-emitter charge gate-collector ("miller ") charge switching safe operating area turn-on delay time current rise time turn-off delay time current fall time turn-on switching energy 4 turn-on switching energy (diode) 5 turn-off switching energy 6 turn-on delay timecurrent rise time turn-off delay time current fall time turn-on switching energy 4 4 turn-on switching energy (diode) 5 5 turn-off switching energy 6 6 min typ max 9200 350 300 9.5 970 65 510 450 44 110 430 60 8810 8615 4295 44 110 480 95 8880 9735 5460 unit pf v nc a ns j ns j thermal and mechanical characteristics unit c/w volts oz gm ib?in n?m min typ max 0.28 n/a 2500 1.03 29.2 10 1.1 characteristicjunction to case (igbt) junction to case (diode) rms voltage ( 50-60hz sinusoidal waveform from terminals to mounting base for 1 min.) package weightmaximum terminal & mounting torque symbol r jc r jc v isolation w t torque downloaded from: http:///
050-7624 rev a 11-2005 APT150GN60J typical performance curves v gs(th) , threshold voltage v ce , collector-to-emitter voltage (v) i c , collector current (a) i c , collector current (a) (normalized) i c, dc collector current(a) v ce , collector-to-emitter voltage (v) v ge , gate-to-emitter voltage (v) i c , collector current (a) 250s pulse test<0.5 % duty cycle 350300 250 200 150 100 50 0 350300 250 200 150 100 50 0 4.03.5 3.0 2.5 2.0 1.5 1.0 0.5 0 1.151.10 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 5 10 15 20 25 30 0 2 4 6 8 10 12 14 0 200 400 600 800 1000 1200 8 10 12 14 16 0 25 50 75 100 125 150 175 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 175 400350 300 250 200 150 100 50 0 1614 12 10 86 4 2 0 3.02.5 2.0 1.5 1.0 0.5 0 300250 200 150 100 50 0 v ce , collecter-to-emitter voltage (v) v ce , collecter-to-emitter voltage (v) figure 1, output characteristics(t j = 25c) figure 2, output characteristics (t j = 125c) v ge , gate-to-emitter voltage (v) gate charge (nc) figure 3, transfer characteristics figure 4, gate charge v ge , gate-to-emitter voltage (v) t j , junction temperature (c) figure 5, on state voltage vs gate-to- emitter voltage figure 6, on state voltage vs junction tem perature t j , junction temperature (c) t c , case temperature (c) figure 7, threshold voltage vs. junction temperature figure 8, dc collector current vs case temper ature 12, 13 &15v 9v 8v 7v 11v t j = 125c t j = 25c t j = -55c v ge = 15v. 250s pulse test <0.5 % duty cycle t j = 125c t j = 25c t j = -55c t j = 175c v ge = 15v 10v v ce = 300v v ce = 120v i c = 150a t j = 25c v ce = 480v t j = 25c. 250s pulse test <0.5 % duty cycle i c = 300a i c = 150a i c = 75a i c = 300a i c = 150a i c = 75a t j = 175c downloaded from: http:///
050-7624 rev a 11-2005 APT150GN60J v ge =15v,t j =125c v ge =15v,t j =25c v ce = 400v r g = 1.0 ? l = 100h switching energy losses (j) e on2 , turn on energy loss (j) t r, rise time (ns) t d(on) , turn-on delay time (ns) switching energy losses (j) e off , turn off energy loss (j) t f, fall time (ns) t d (off) , turn-off delay time (ns) i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 9, turn-on delay time vs collector current figure 10, turn-off delay time vs collector curre nt i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 11, current rise time vs collector current figure 12, current fall time vs collector curre nt i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 13, turn-on energy loss vs collector current figure 14, turn off energy loss vs collector current r g , gate resistance (ohms) t j , junction temperature (c) figure 15, switching energy losses vs. gate resistance figure 16, switching energy losses vs junc tion temperature v ce = 400v t j = 25c , or 125c r g = 1.0 ? l = 100h 6050 40 30 20 10 0 400350 300 250 200 150 100 50 0 40,00035,000 30,000 25,000 20,000 15,000 10,000 5,000 0 70,00060,000 50,000 40,000 30,000 20,000 10,000 0 600500 400 300 200 100 0 180160 140 120 100 8060 40 20 0 18,00016,000 14,000 12,000 10,000 8,0006,000 4,000 2,000 0 40,00035,000 30,000 25,000 20,000 15,000 10,000 5,000 0 v ge = 15v t j = 125c, v ge = 15v t j = 25c, v ge = 15v v ce = 400v v ge = +15v r g = 1.0 ? 30 70 110 150 190 230 270 310 30 70 110 150 190 230 270 310 30 70 110 150 190 230 270 310 30 70 110 150 190 230 270 310 30 70 110 150 190 230 270 310 30 70 110 150 190 230 270 310 0 5 10 15 20 0 25 50 75 100 125 r g = 1.0 ? , l = 100 h, v ce = 400v r g = 1.0 ? , l = 100 h, v ce = 400v t j = 25 or 125c,v ge = 15v v ce = 400v v ge = +15v r g = 1.0 ? t j = 125c t j = 25c v ce = 400v v ge = +15v r g = 1.0 ? t j = 125c t j = 25c e on2, 300a e off, 300a e on2, 150a e off, 150a e on2, 75a e off, 75a v ce = 400v v ge = +15v t j = 125c e on2, 300a e off, 300a e on2, 150a e off, 150a e on2, 75a e off, 75a downloaded from: http:///
050-7624 rev a 11-2005 APT150GN60J typical performance curves 0.300.25 0.20 0.15 0.10 0.05 0 z jc , thermal impedance (c/w) 0.3 d = 0.9 0.7 single pulse rectangular pulse duration (seconds) figure 19a, maximum effective transient thermal impedance, junction-to-case vs pulse duration 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 20,00010,000 500100 5010 500400 300 200 100 0 c, capacitance ( p f) i c , collector current (a) v ce , collector-to-emitter voltage (volts) v ce , collector to emitter voltage figure 17, capacitance vs collector-to-emitter voltage figure 18,minimim switching safe operatin g area 0 10 20 30 40 50 0 100 200 300 400 500 600 700 figure 19b, transient thermal impedance model 30 50 70 90 110 130 150 170 190 f max , operating frequency (khz) i c , collector current (a) figure 20, operating frequency vs collector current t j = 125 c t c = 75 c d = 50 %v ce = 400v r g = 1.0 ? 5010 51 0.5 0.1 0.05 f max = min (f max , f max2 ) 0.05 f max1 = t d(on) + t r + t d(off) + t f p diss - p cond e on2 + e off f max2 = p diss = t j - t c r jc peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: c res c oes c ies 0.0964 0.184 0.00770 0.300 power (watts) rc model junctiontemp. ( c) case temperature. ( c) downloaded from: http:///
050-7624 rev a 11-2005 APT150GN60J figure 22, turn-on switching waveforms and de?nitions figure 23, turn-off switching waveforms and de?nitions t j = 125c collector current collector voltage gate voltage switching energy 5% 10% t d(on) 90% 10% t r 5% t j = 125c collector voltage collector current gate voltage switching energy 0 90% t d(off) 10% t f 90% apt100dq60 sot-227 (isotop ?) package outline isotop ? is a registered trademark of sgs thomson. 31.5 (1.240)31.7 (1.248) dimensions in millimeters and (inches) 7.8 (.307)8.2 (.322) 30.1 (1.185)30.3 (1.193) 38.0 (1.496)38.2 (1.504) 14.9 (.587)15.1 (.594) 11.8 (.463)12.2 (.480) 8.9 (.350)9.6 (.378) hex nut m4 (4 places) 0.75 (.030)0.85 (.033) 12.6 (.496)12.8 (.504) 25.2 (0.992)25.4 (1.000) 1.95 (.077)2.14 (.084) * emitter collector gate * r = 4.0 (.157) (2 places) 4.0 (.157)4.2 (.165) (2 places) w=4.1 (.161)w=4.3 (.169) h=4.8 (.187)h=4.9 (.193) (4 places) 3.3 (.129)3.6 (.143) * emitter emitter terminals are shorted internally. current handling capability is equal for either source terminal. i c a d.u.t. v ce figure 21, inductive switching test circuit v cc downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of APT150GN60J

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X